ARIEL2: A phase 2 study to prospectively identify ovarian cancer patients likely to respond to rucaparib

Elizabeth Swisher,1 James Brenton,2 Scott Kaufmann,3 Amit Oza,4 Robert L. Coleman,5 David O’Malley,6 Gottfried Konecny,7 Ling Ma,8 Maria Harrell,1 Dan Visscher,3 Andrea Wahner Hendrickson,3 Kevin Lin,9 Mitch Raponi,9 Elaina Mann,9 Heidi Giordano,9 Lindsey Rolfe,10 Jeff Isaacson,11 Roman Yelensky,12 Clare Scott,13 Andrew Allen,9 Iain McNeish14

1University of Washington School of Medicine, Seattle, WA; 2Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; 3Mayo Clinic, Rochester, MN; 4Princess Margaret Hospital, Toronto, Canada; 5The University of Texas MD Anderson Cancer Center, Houston, TX; 6The Ohio State University, James Cancer Center, Columbus, OH; 7University of California, Los Angeles (UCLA), Los Angeles, CA; 8Rocky Mountain Cancer Center, Lakewood, CO; 9Clovis Oncology, San Francisco, CA; 10Clovis Oncology, Cambridge, UK; 11Clovis Oncology, Boulder, CO; 12Foundation Medicine Inc., Cambridge, MA; 13The Royal Melbourne Hospital, Melbourne, Australia; 14Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
Disclosures

- Dr. Swisher’s EORTC-NCI-AACR 2014 travel-related expenses were paid for by Clovis Oncology
Today’s Presentation

• A genetic signature identifying a BRCA-like phenotype has been developed by Clovis Oncology
• Ovarian cancer is commonly associated with homologous recombination (HR) deficiency, both BRCA-mutated and BRCA-like
• The ARIEL2 study assesses the utility of tumor BRCA mutations and the BRCA-like signature in predicting response to rucaparib, a potent PARP inhibitor, in women with platinum-sensitive, relapsed ovarian cancer
• Interim data from the ARIEL2 trial will be presented

PARP=poly (ADP-ribose) polymerase.
PARPi, used in the genetic context of HRD, drive synthetic lethality

HR is a complex process requiring coordinated function of many gene products, such as BRCA1, BRCA2, PALB2, RAD51, etc.

HRD=HR deficiency; PARPi=PARP inhibitor.
PARPi, used in the genetic context of HRD, drive synthetic lethality.

Loss of any one of these genes may lead to deficiency of HR, and consequent sensitivity to PARPi therapy.
How do we identify patients who will benefit from PARPi therapy?

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>BRCA1</th>
<th>BRCA2</th>
<th>PALB2</th>
<th>RAD51</th>
<th>etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous gene deletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsense and frameshift mutation (germline and somatic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epigenetic gene silencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA-mediated gene silencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other mechanisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tumor BRCA1/2 gene sequencing identifies these BRCA alterations

How to identify these mechanisms of HRD: “BRCA-like signature”?
Defining a BRCA-like signature through single gene analysis is complex – not all genes are functionally relevant.

Rucaparib IC\textsubscript{50} Fold Change After siRNA Knockdown in OVCAR-3 Cell Line

IC\textsubscript{50} = half maximal inhibitory concentration.
HRD causes genome-wide loss of heterozygosity (LOH) that can be measured by comprehensive genomic profiling based on NGS.

Hypothesis 1:
Ovarian cancer patients with high genomic LOH suggesting BRCA-like signature will respond to PARPi.

Hypothesis 2:
Ovarian cancer patients who are “biomarker negative” (ie, with low genomic LOH) will not respond to PARPi.

mut= mutation; *NGS=* next-generation sequencing; *wt=* wild type.
Diagnostic development: Cutoff defined for BRCA-like signature, being tested and refined

TCGA and AOCS Overall Survival Data Used to Develop LOH Cutoff to Identify High-Grade Ovarian Cancer Patient Tumors with BRCA-Like Signature

Prospective testing of prespecified cutoff in ARIEL2 and ARIEL3

ARIEL2 goal: Assess rucaparib sensitivity in prospectively defined molecular subgroups

Key Eligibility
- High-grade serous or endometrioid ovarian cancer
- ≥1 prior platinum chemotherapy
- Platinum-sensitive, relapsed, measurable disease
- Adequate tumor tissue (screening biopsy and archival)
- No prior PARPi

Primary Endpoint
- PFS (RECIST) in:
 - BRCAmut
 - BRCA-like (excludes BRCAmut)
 - Biomarker negative

Secondary Endpoints
- ORR (RECIST & CA-125)
- Safety
- Pharmacokinetics

N = 180
Cap on known germline BRCAmut

600 mg BID rucaparib continuously until progression by RECIST

CA-125=cancer antigen 125 test; ORR=overall response rate; PFS=progression-free survival; RECIST=Response Evaluation Criteria In Solid Tumors.
Demographics and baseline characteristics (N=121*)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N (range or %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years</td>
<td>66 (39–86)</td>
</tr>
<tr>
<td>ECOG PS grade</td>
<td></td>
</tr>
<tr>
<td>0 / 1 / Pending</td>
<td>81 / 39 / 1</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Epithelial ovarian cancer</td>
<td>92</td>
</tr>
<tr>
<td>Primary peritoneal / fallopian tube cancer / pending</td>
<td>15 / 9 / 5</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>Serous / endometrioid / pending</td>
<td>116 / 3 / 2</td>
</tr>
<tr>
<td>No. of prior treatment regimens</td>
<td></td>
</tr>
<tr>
<td>Median no. of regimens (n=115)</td>
<td>1 (1–6)</td>
</tr>
<tr>
<td>1–2</td>
<td>93 (81)</td>
</tr>
<tr>
<td>>2</td>
<td>22 (19)</td>
</tr>
<tr>
<td>Median no. of platinum-based regimens (n=112)</td>
<td>1 (1–5)</td>
</tr>
<tr>
<td>1–2</td>
<td>95 (85)</td>
</tr>
<tr>
<td>>2</td>
<td>17 (15)</td>
</tr>
</tbody>
</table>

*Data as of 27 October 2014. ECOG PS=Eastern Cooperative Oncology Group Performance Status.
Rucaparib is well tolerated – no discontinuations due to AEs

Treatment-Related AEs in ≥15% of Patients (N=121)

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Worst Grade (NCI-CTCAE v4) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>Grade 1: 32%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Grade 1: 37%</td>
</tr>
<tr>
<td>ALT / AST Increased</td>
<td>Grade 1: 26%</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>Grade 1: 24%</td>
</tr>
<tr>
<td>Decreased Appetite</td>
<td>Grade 1: 23%</td>
</tr>
<tr>
<td>Anemia / Low Hgb</td>
<td>Grade 1: 22%</td>
</tr>
<tr>
<td>Constipation</td>
<td>Grade 1: 21%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Grade 1: 20%</td>
</tr>
</tbody>
</table>

AE=adverse event; ALT=alanine transaminase; AST=aspartate transaminase; Hgb=hemoglobin; NCI-CTCAE=National Cancer Institute Common Terminology Criteria for Adverse Events.
The majority of BRCAwt patient tumors exhibit BRCA-like signature

Tumor BRCA/BRCA-like Status as Determined by HRD Test (N=121)

- 17 germline BRCAmut
- 12 somatic BRCAmut
- 1 indeterminate
- High genomic LOH
Target lesion reduction seen in majority of patients classified by screening biopsy

Best Target Lesion Response

38% ORR (RECIST)

77% disease control rate (CR, PR, or SD >24 weeks)

61% of patients continuing on treatment (+)

Data reported for n=61 patients with screening biopsy results who are evaluable by RECIST v1.1.

+=ongoing; CR=complete response; PR=partial response; SD=stable disease.
Greatest rucaparib activity observed in BRCAmut patients...

- Robust clinical activity observed in BRCAmut patients (n=23)
 - 61% ORR (RECIST)
 - 70% ORR (RECIST & CA-125)
 - 83% of patients continuing on treatment (+)

- Responses observed in germline and somatic BRCAmut tumors

Best Target Lesion Response

Germline
Somatic
Indeterminate

Change from Baseline (%)

+=ongoing.
...and differential rucaparib activity seen in patients with/without BRCA-like signature

- Clinical activity observed in BRCA^{wt} patients with BRCA-like signature (n=25)
 - 32% ORR (RECIST)
 - 40% ORR (RECIST & CA-125)
 - 52% of patients continuing on treatment (+)
- Few responses observed in BRCA^{wt} patients without BRCA-like signature (n=13)
 - 8% ORR (RECIST)
 - 8% ORR (RECIST & CA-125)
 - 38% of patients continuing on treatment (+)

Best Target Lesion Response

+ = ongoing.

26th EORTC-NCI-AACR SYMPOSIUM ON
‘MOLECULAR TARGETS & CANCER THERAPEUTICS’
ARIEL program will prospectively validate the clinical utility of the HRD test

Phase 2 Study (ARIEL2)
- High-grade ovarian cancer
- Platinum sensitive
- Treatment setting
- Efficacy (PFS) in prespecified HRD subgroups
- Optimize definition of rucaparib-sensitive patients

Pivotal Study (ARIEL3)
- High-grade ovarian cancer
- Platinum sensitive
- Maintenance setting
- Efficacy (PFS) in prospectively defined HRD subgroups

Test all ARIEL3 tumor samples, classify HRD status

(Refine) HRD test

Final Analysis
Conclusions

- Rucaparib is active and well-tolerated in high-grade ovarian cancer
- Comprehensive genomic analysis of tumor based on NGS can prospectively identify ovarian cancer patients who respond to rucaparib
 - Identifies all relevant BRCA1/2 mutations and BRCA-like signature
- Updated results from ARIEL2 (N=180) will be presented in 1st half of 2015
- The BRCA-like signature could have utility in other cancer types beyond ovarian cancer

Tumor genetic data: N=121; efficacy data: N=61. Germline portion of BRCA mutations (medium blue) identified by current blood-based assays: 15%.
Acknowledgements

First and foremost, ARIEL2 patients and their families
Iain McNeish, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK – Co-coordinating Investigator for ARIEL2

Additional Investigators and Sites: Martin Buck (Sir Charles Gairdner Hospital), Michael Friedlander (Prince of Wales Hospital), Jeffrey Goh (Royal Brisbane and Women’s Hospital), Paul Harnett (Westmead Hospital), Ganessan Kichenadasse (Flinders Medical Centre), Anna Tinker (British Columbia Cancer Agency), Prafull Ghatage (Tom Baker Cancer Centre), Stephen Welch (London Regional Cancer Centre), Diane Provencher (Centre Hospitalier de L’University de Montreal), Johanne Weberpals (Ottawa Health Research Institute), Katia Tonkin (Cross Cancer Institute), Alain Lortholary (Centre Catherine de Sienne), Anne Floquet (Institut Bergonie), Isabelle Ray-Coquard (Centre Leon Berard), Alexandra Leary (Institut de Cancerologie Gustave Roussy), Laurence Gladieff (Institut Claudius Regaud), Benoit You (Centre Hospitalier Lyon Sud), Frederic Selle (Hopital Tenon), Jacques Medioni (Hopital European Georges Pompidou), Ana Oaknin (Hospital Vall d’Hebron), Andres Cervantes (Hospital Clinico Universitario de Valencia), Andres Poveda (Instituto Valenciano de Oncologia), Susana Banerjee (Royal Marsden), James Brenton (Addenbrooke’s Hospital), Sarah Blagden (Imperial College), Rebecca Kristeleit (University College London), Yvette Drew (Northern Centre for Cancer Care), Alison Young (Saint James Hospital), Andrew Clamp (Christie Hospital), Deborah Armstrong (Sidney Kimmel), Katherine Bell-McGuinn (Memorial Sloan-Kettering), Cesar Castro (MGH), Janiel Cragun (University of Arizona), Mark Morgan (University of Pennsylvania), Paul Haluska (Mayo Clinic), Lainie Martin (Fox Chase Cancer Center), Panagiotis Konstantinopoulos (Dana-Farber Cancer Institute), Kathleen More (University of Oklahoma), David Mutch (Washington University), Bhavana Pothuri (Manhattan Medical Research), Lee-May Chen (UCSF), Nelson Teng (Stanford University), Wael Harb (Horizon Oncology Center), Brian DiCarlo (Coastal Integrative Cancer Care), Robert Dichmann (Central Coast Medical Oncology Group), David Park (Saint Jude Heritage Medical Center), James Sanchez (Comprehensive Cancer Centers of Nevada), Timothy Vanderkwaak (Hope – A Woman’s Cancer Institute), Gerardo Colon-Otero (Mayo Clinic Jacksonville)

Foundation Medicine: Murtaza Mehdi, Scott Yerganian, James Sun, Matthew Hawryluk, Christine Vietz, Christine Burns, Vince Miller

Clovis Oncology: Sanjay Shetty, Erin Dominy, Monica Roy, Lara Maloney, Sandra Goble, Mike Bartosiewicz, Amanda Cha, Jennifer Borrow, Tom Harding, Liliane Robillard, Darrin Despain, Simon Watkins